Home
Class 12
MATHS
Express tan^(-1) ((3a^(2)x -x^(3))/( a^(...

Express `tan^(-1) ((3a^(2)x -x^(3))/( a^(3) -3ax^(2)))`, where `a gt 0, (-a)/(sqrt(3)) le x le (a)/(sqrt(3))` in the simplest form.

Promotional Banner

Similar Questions

Explore conceptually related problems

Write cot^(-1) (sqrt(1+x^(2))-x) in the simplest form.

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Express tan^(-1)(sqrt((1-cosx)/(1+cosx))), x lt pi , in the simplest form.

(2+sqrt3)(2-sqrt3) is

Solve tan^2 theta+(1-sqrt 3)tan theta-sqrt(3)=0

Solve tan (2/3 theta)=sqrt(3)

Show that tan^-1(frac{3a^2x-x^3}{a^3-3ax^2})=3tan^-1frac{x}{a}

Find the derivate of : y = tan^-1frac(3x-x^3)(1-3x^2)

Determine x if log_2 (log_(sqrt3) x)=2