Home
Class 12
MATHS
Prove that. tan^(-1)((1)/(4)) +tan^(-1...

Prove that.
`tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3) .

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

Prove that 2"tan"^(-1)(1)/(2) +"tan"^(-1)(1)/(7) ="tan"^(-1)(31)/(17) .

Prove that "tan"^(-1)(1)/(5) +"tan"^(-1)(1)/(7) +"tan"^(-1)(1)/(3) +"tan"^(-1)(1)/(8) =(pi)/(4) .

Prove that (9pi)/(8) -(9)/(4) sin^(-1) ((1)/(3)) =(9)/(4) sin^(-1)((2sqrt(2))/(3)) .

Prove that tan^(-1)1 +cos^(-1)(-(1)/(2)) +sin^(-1) (-(1)/(2)) =(3pi)/(4) .

Prove that "tan"^(-1)1 +tan^(-1)2 +tan^(-1)3 =pi .

Evaluate tan^(-1)3 +tan^(-1)4 -tan^(-1)(-(7)/(11)) .

Prove that "sin"^(-1)(5)/(13) +"cos"^(-1)(3)/(5) ="tan"^(-1)(63)/(16) .

Prove that tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]