Home
Class 12
MATHS
Prove that tan^(-1) sqrt(x) =(1)/(2) ...

Prove that
`tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

Prove that 2 cos^(-1)x =cos^(-1)(2x^(2)-1) .

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

Solve 2 tan^(-1)(cos x) =tan^(-1)(2 "cosec"x) .

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Solve for x, tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3), -1 lt x lt 1 .

Solve "tan"^(-1)(1-x)/(1+x) =(1)/(2) "tan"^(-1)x, x gt 0 .