Home
Class 12
MATHS
Prove that (9pi)/(8) -(9)/(4) sin^(-1...

Prove that
`(9pi)/(8) -(9)/(4) sin^(-1) ((1)/(3)) =(9)/(4) sin^(-1)((2sqrt(2))/(3))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

Prove that tan^(-1)1 +cos^(-1)(-(1)/(2)) +sin^(-1) (-(1)/(2)) =(3pi)/(4) .

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

Prove that sin^(-1)((8)/(17)) +sin^(-1)((3)/(5)) =cos^(-1)((36)/(85)) .

Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3) .

Prove that "sin"^(-1)(8)/(17) +"sin"^(-1)(3)/(5) ="tan"^(-1)(77)/(36) .

Prove that "sin"^(-1)(4)/(5) +"sin"^(-1)(5)/(13) +"sin"^(-1)(16)/(65)=(pi)/(2) .

Solve cos(2 sin^(-1)x)=(1)/(9)

Evaluate sin[(pi)/(3) -sin^(-1)(-(1)/(2))]

Prove that log_2 log_3 9=1