Home
Class 12
MATHS
Find the value of "tan" (1)/(2)[ "sin...

Find the value of
`"tan" (1)/(2)[ "sin"^(-1)(2x)/(1+x^(2)) +"cos"^(-1) (1-y^(2))/(1+y^(2))], |x| lt 1, y gt 0 and xy lt 1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x such that cos (sin^(-1)x)=(1)/(2) .

Find the derivate of y = (3 - 2x)sin^(-1)2x .

Find the value of x satisfying sin^(-1)((2a)/(1+a^(2)))+cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1) ((2x)/(1-x^(2)))

Solve for x, tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3), -1 lt x lt 1 .

Find the derivative of : y = cos{2 sin^-1(cos x)}

Find the derivate of : y = sin^(–1) (2x √(1−x2))

Find the derivative of: y = tan^-1(frac(1+x)(1-x))

Find the derivative of : y= sin^-1(1-x)+sqrt(2x-x^2)

Prove that tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]