Home
Class 12
MATHS
Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4)...

Solve `tan^(-1)2x +tan^(-1)3x =(pi)/(4)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

If the sum of the ascute angles tan^(-1)x and "tan"^(-1) (1)/(2) is 45^(@) , then what is the value of x?

Solve for x : tan^-1(1+x)+tan^-1(1-x)=pi/4

Solve for x : 2 tan^-1 x+sec^-1 x=pi/2

Solve 2 tan^(-1)(cos x) =tan^(-1)(2 "cosec"x) .

Prove that "tan"^(-1)1 +tan^(-1)2 +tan^(-1)3 =pi .

Solve sin^(-1)x +sin^(-1)(3x-4x^(3))=pi .