Home
Class 12
MATHS
Solve "tan"^(-1)(1-x)/(1+x) =(1)/(2) "t...

Solve `"tan"^(-1)(1-x)/(1+x) =(1)/(2) "tan"^(-1)x, x gt 0`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Solve 2 tan^(-1)(cos x) =tan^(-1)(2 "cosec"x) .

Solve for x : tan^-1frac{1-x}{1+x}=1/2tan^-1 x,x>0

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Prove that tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]

Solve : tan^-1 2x+tan^-1 3x=pi/4