Home
Class 12
MATHS
Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/...

Solve `tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(5)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

Prove that "tan"^(-1)(1)/(5) +"tan"^(-1)(1)/(7) +"tan"^(-1)(1)/(3) +"tan"^(-1)(1)/(8) =(pi)/(4) .

If the sum of the ascute angles tan^(-1)x and "tan"^(-1) (1)/(2) is 45^(@) , then what is the value of x?

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

If "tan"^(-1)(x-1)/(x-2) +"tan"^(-1) (x+1)/(x+2) =(pi)/(4) , then find the value of x.

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3) .

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

Solve sin^(-1)x +sin^(-1)(3x-4x^(3))=pi .