Home
Class 12
MATHS
Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2...

Solve `tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Solve for x, cos^(-1) x + sin^(-1)((x)/(2))=(pi)/(6) .

Solve sin^(-1)(1-x) -2 sin^(-1)x =(pi)/(2)

Solve : tan^-1 2x+tan^-1 3x=pi/4

If "tan"^(-1)(x-1)/(x-2) +"tan"^(-1) (x+1)/(x+2) =(pi)/(4) , then find the value of x.

Solve for x, tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3), -1 lt x lt 1 .

If the sum of the ascute angles tan^(-1)x and "tan"^(-1) (1)/(2) is 45^(@) , then what is the value of x?

Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3) .