Home
Class 12
MATHS
If "cos"^(-1)(x)/(a)+"cos"^(-1)(y)/(b) =...

If `"cos"^(-1)(x)/(a)+"cos"^(-1)(y)/(b) =theta`, then prove that
`(x^(2))/(a^(2)) -(2xy)/(ab) cos theta +(y^(2))/(b^(2))=sin^(2) theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

If cos^-1 x+cos^-1 y=theta , prove that x^2+y^2-2xycostheta=sin^2theta

Prove that 8 sin^4(theta/2)-8sin^2(theta/2)+1=cos2theta

If tan theta = a/b prove that (2 sec theta +1)/(cos theta +2) is sqrt(a^2+b^2)/b .

If tan theta = 3/4 , proved that sin^2 theta+cos^2 theta is 1.

If 7 sin^2theta + 3 cos^2 theta = 4, then prove that tantheta = 1/sqrt(3)

Find frac(d^2y)(dx^2) : (ii) x = a cos theta, y = b sin theta

If sin^2theta + sin^ 4theta = 1 , then prove that cos^2theta+ costheta= 1

If sin^-1 x+sin^-1 y=theta , prove that x^2+y^2+2xycostheta=sin^2theta