Home
Class 12
MATHS
If tan^-1 x+tan^-1 y+tan^-1 z=pi, prove ...

If `tan^-1 x+tan^-1 y+tan^-1 z=pi`, prove that `x+y+z=xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^-1 x+tan^-1 y+tan^-1 z=pi/2 , prove that xy+yz+zx=1

If sin^-1 x+sin^-1 y +sin^-1 z=pi/2 , prove that x^2+y^2+z^2+2xyz=1 .

If sin^-1 x +sin^-1 y + sin ^-1 z=pi , prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2xyz

If sin^-1 x+sin^-1 y+sin^-1 z=pi , prove that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If cos^-1 x +cos^-1 y + cos ^-1 z=pi , prove that x^2+y^2+z^2+2xyz=1 .

If cos^(-1) x +cos^(-1)y +cos^(-1)z =pi , then prove that x^(2)+y^(2)+z^(2)+2xyz=1 .

Solve : tan^-1 2x+tan^-1 3x=pi/4

Show that : tan(tan^-1 x+tan^-1 y+tan^-1 z)=cot(cot^-1 x+cot^-1 y+cot^-1 z)

If tan A -tan B = x and cot B - cot A = y, prove that cot(A-B)=1/x+1/y

If tan^-1frac{yz}{xr}+tan^-1frac{zx}{yr}+tan^-1frac{xy}{zr}=pi/2 , prove that x^2+y^2+z^2=r^2 .