Home
Class 12
MATHS
Prove that tan^(-1)((sqrt(1+x^(2))+sq...

Prove that
`tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .

If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha , then prove that x^(2) =sin 2alpha .

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Show that tan^-1(frac{sqrt(1+x)-sqrt(1-x)}{sqrt(1+x)+sqrt(1-x)})=pi/4-1/2cos^-1 x

If y=tan^-1frac{sqrt(1+x^2)+sqrt(1-x^2)}{sqrt(1+x^2)-sqrt(1-x^2)] , show that x^2=sin 2y