Home
Class 12
MATHS
Solve sin^(-1)(1-x) -2 sin^(-1)x =(pi)/(...

Solve `sin^(-1)(1-x) -2 sin^(-1)x =(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
x=0
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2) , then find the value of x.

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

Find x, if sin^(-1)x +sin^(-1)2x =(pi)/(3) .

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

Solve sin^(-1)x +sin^(-1)(3x-4x^(3))=pi .

Solve the following equation for x. sin^(-1)(6x)+sin^(-1) (6sqrt(3)x)= -(pi)/(2) .

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve for x, cos^(-1) x + sin^(-1)((x)/(2))=(pi)/(6) .

Solve "tan"^(-1)(1-x)/(1+x) =(1)/(2) "tan"^(-1)x, x gt 0 .

Evaluate sin[(pi)/(3) -sin^(-1)(-(1)/(2))]