Home
Class 12
MATHS
Prove that tan((pi)/(4)+(1)/(2) "cos"^(-...

Prove that `tan((pi)/(4)+(1)/(2) "cos"^(-1)(a)/(b)) +tan((pi)/(4) -(1)/(2) "cos"^(-1)(a)/(b)) =(2b)/(a)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2"tan"^(-1)(1)/(2) +"tan"^(-1)(1)/(7) ="tan"^(-1)(31)/(17) .

Prove that tan^(-1)1 +cos^(-1)(-(1)/(2)) +sin^(-1) (-(1)/(2)) =(3pi)/(4) .

Prove that "tan"^(-1)(1)/(5) +"tan"^(-1)(1)/(7) +"tan"^(-1)(1)/(3) +"tan"^(-1)(1)/(8) =(pi)/(4) .

Prove that "sin"^(-1)(12)/(13) +"cos"^(-1)(4)/(5) +"tan"^(-1) (63)/(16)=pi .

Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3) .

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

Prove that tan^(-1) sqrt(x) =(1)/(2) cos^(-1) ((1-x)/(1+x)) , x in [0, 1]

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

Show that : tan(pi/4+1/2cos^-1frac{a}{b})+tan(pi/4-1/2cos^-1frac{a}{b})=(2b)/a

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .