Home
Class 12
MATHS
Prove that sin^(-1)((8)/(17)) +sin^(-1)...

Prove that `sin^(-1)((8)/(17)) +sin^(-1)((3)/(5)) =cos^(-1)((36)/(85))` .

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(4)-(x)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "sin"^(-1)(8)/(17) +"sin"^(-1)(3)/(5) ="tan"^(-1)(77)/(36) .

Prove that "cos"^(-1) (12)/(13) +"sin"^(-1)(3)/(5) ="sin"^(-1)(56)/(65) .

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

Show that "sin"^(-1) (3)/(5) -"sin"^(-1)(8)/(17) ="cos"^(-1)(84)/(85) .

Prove that "sin"^(-1)(5)/(13) +"cos"^(-1)(3)/(5) ="tan"^(-1)(63)/(16) .

Prove that "sin"^(-1)(4)/(5) +"sin"^(-1)(5)/(13) +"sin"^(-1)(16)/(65)=(pi)/(2) .

Prove that tan^(-1)1 +cos^(-1)(-(1)/(2)) +sin^(-1) (-(1)/(2)) =(3pi)/(4) .

Prove that "sin"^(-1)(12)/(13) +"cos"^(-1)(4)/(5) +"tan"^(-1) (63)/(16)=pi .

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

Evaluate sin[(pi)/(3) -sin^(-1)(-(1)/(2))]