Home
Class 12
MATHS
Prove that "tan"^(-1)(1)/(4) +"tan"^(-1)...

Prove that `"tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) =(1)/(2)"tan"^(-1)(4)/(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`x=2-sqrt(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2"tan"^(-1)(1)/(2) +"tan"^(-1)(1)/(7) ="tan"^(-1)(31)/(17) .

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

Prove that "tan"^(-1)(1)/(5) +"tan"^(-1)(1)/(7) +"tan"^(-1)(1)/(3) +"tan"^(-1)(1)/(8) =(pi)/(4) .

Prove that "sin"^(-1)(4)/(5) +2"tan"^(-1) (1)/(3)=(pi)/(2) .

Prove that "tan"^(-1)1 +tan^(-1)2 +tan^(-1)3 =pi .

Prove that "sin"^(-1)(12)/(13) +"cos"^(-1)(4)/(5) +"tan"^(-1) (63)/(16)=pi .

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Evaluate the following. "tan"^(-1) (1)/(2) +"tan"^(-1)(1)/(3)

Solve "tan"^(-1)(1-x)/(1+x) =(1)/(2) "tan"^(-1)x, x gt 0 .

Prove that tan((pi)/(4)+(1)/(2) "cos"^(-1)(a)/(b)) +tan((pi)/(4) -(1)/(2) "cos"^(-1)(a)/(b)) =(2b)/(a) .