Home
Class 12
MATHS
If sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2...

If `sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2)`, then find the value of x.

Text Solution

Verified by Experts

The correct Answer is:
`(2a)/(1-a^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x) -2 sin^(-1)x =(pi)/(2)

If sin^(-1)x +sin^(-1)y =(2pi)/(3) , then find the value of cos^(-1)x +cos^(-1)y .

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

If "tan"^(-1)(x-1)/(x-2) +"tan"^(-1) (x+1)/(x+2) =(pi)/(4) , then find the value of x.

If sin^(-1) x = (pi)/(5) , write down the value of cos^(-1)x .

Find x, if sin^(-1)x +sin^(-1)2x =(pi)/(3) .

If sin ("sin"^(-1)(1)/(5) +cos^(-1)x)=1 , then find the value of x.

If f(x)=sin^(-1) x+sec^(-1)((1)/(x)) then find f'(x).

Evaluate sin[(pi)/(3) -sin^(-1)(-(1)/(2))]