Home
Class 12
MATHS
Solve for x, tan^(-1)((2x)/(1-x^(2)))+...

Solve for x,
`tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3), -1 lt x lt 1`.

Text Solution

Verified by Experts

The correct Answer is:
x=1
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

Solve for x : tan^-1(1+x)+tan^-1(1-x)=pi/4

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Solve for x : 2 tan^-1 x+sec^-1 x=pi/2

Find the value of "tan" (1)/(2)[ "sin"^(-1)(2x)/(1+x^(2)) +"cos"^(-1) (1-y^(2))/(1+y^(2))], |x| lt 1, y gt 0 and xy lt 1 .

Solve for x : 2tan^-1(cos x)=tan^-1(2cosec x)

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .