Home
Class 12
MATHS
Solve for x, cos^(-1) x + sin^(-1)((x)/(...

Solve for `x, cos^(-1) x + sin^(-1)((x)/(2))=(pi)/(6)`.

Text Solution

Verified by Experts

The correct Answer is:
x=1
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x) -2 sin^(-1)x =(pi)/(2)

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Find x, if sin^(-1)x +sin^(-1)2x =(pi)/(3) .

Solve the following equation for x. sin^(-1)(6x)+sin^(-1) (6sqrt(3)x)= -(pi)/(2) .

Solve sin^(-1)x +sin^(-1)(3x-4x^(3))=pi .

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

Solve cos(2 sin^(-1)x)=(1)/(9)

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

Solve for x : 2 tan^-1 x+sec^-1 x=pi/2

Solve for x, tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3), -1 lt x lt 1 .