Home
Class 12
MATHS
If A=[(2,-1),(-1,2)], then show that A^(...

If `A=[(2,-1),(-1,2)]`, then show that `A^(2) -4A +3I=O`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,-1),(-1,2)] , then show that A^(-1) =[((2)/(3),(1)/(3)),((1)/(3),(2)/(3))]

If A = [(3, 1),(-1, 2)] show that A^2 - 5A + 7I = 0 .

If A =((3, -5),(-4, 2)) show that A^2 -5A - 14I = 0 .

If A = [(2,3),(3,10)],I=[(1,0),(0,1)] then show that (2I -A) (10I-A) = 9I .

If A = [(2,3),(1, 2)] prove that A^3 - 4A^2 + A = 0

If A=[(4,2),(-1,1)], I=[(1,0),(0,1)] show that (A-2I)(A-3I)=[(0,0),(0,0)]

If A=[(1,0,1),(0,1,2),(0,0,4)] , show that |3A|=27|A|

If A=[(1,1),(0,1)] then find the value of A^(3)+A^(2)-5A+3I , where I =[(1,0),(0,1)] .

Compute A^-1 for the matrix A=[[2,3],[5,-2]] and show that A^-1=1/19A .

If A=[(2,-1),(3,2)] and B =[(0,4),(-1,7)] , then find 3A^(2) -2B+1 .