Home
Class 12
MATHS
Show that abs[[a-b-c,2a,,2a],[2b,b-c-a...

Show that
`abs[[a-b-c,2a,,2a],[2b,b-c-a,,2b],[2c,2c,,c-a-b]]=(a+b+c)^3`

Text Solution

Verified by Experts

The correct Answer is:
`(a+b+c)^(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinant show that : |(bc,a,a^2),(ca,b,b^2),(ab,c,c^2)|=(b-c)(c-a)(a-b)(ab+bc+ca)

Using properties of determinant show that : |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Using properties of determinant show that : |(a,b+c,a^2),(b,c+a,b^2),(c,a+b,c^2)|=-(a+b+c)(a-b)(b-c)(c-a)

Without expanding show that : |(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)|=2|(a,b,c),(b,c,a),(c,a,b)|

Without expanding show that : |(bc,a,a^2),(ca,b,b^2),(ab,c,c^2)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Using properties of determinant show that : |(a^2,bc,c^2+ac),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2)|=4a^2b^2c^2

Using properties of determinant show that : |(a,b,c),(a^2,b^2,c^2),(b+c,c+a,a+b)|=(a+b+c)(a-b)(b-c)(c-a)

Prove that |(a,a+b,a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c)| = a^(3)

Without expanding show that : |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)|=0