Home
Class 12
MATHS
Show that |(x, x^(2),y+z),(y,y^(2),z+x),...

Show that `|(x, x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y)| = (y-z)(z-x)(x-y)(x+y+z)`.

Text Solution

Verified by Experts

The correct Answer is:
`(x+y+z)(x-y)(y-z)(z-x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(y+z, x,y),(z+x, z, x),(x+y, y, z)| = (x+y+z)(x-z)^(2) .

Prove that 4x^2(y-z)+y^2(2x-z)+z^2(2x+y)-4xyz = (2x+y)(y-z)(2x-z)

Using properties of determinant show that : |((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3

If x + y + z =xyz,show that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/(1-x^2).(2y)/(1-y^2).(2z)/(1-z^2)

Prove that (3x-2y)^3+(y-2z)^3+(y+2z-3x)^3=3(3x-2y)(y-2z)(y+2z-3x)

Prove that (3x-2y)^3+(y+2z)^3+(y-2z-3x)^3=3(3x-2y)(y+2z)(y-2z-3x)

Factorise : |(1,1,1),(x,y,z),(x^2,y^2,z^2)|

Simplify (y-z)^2(z-y)+(z-x)^2(x-z)+(x-y)^2(y-x)+3(y-z)(z-x)(x-y)

Using properties of determinant show that : |(-x^2,xy,xz),(xy,-y^2,yz),(xz,yz,-z^2)|=4x^2y^2z^2

Prove that (x-y)^3+(y-z)^3+(z-x)^3=3(x-y)(y-z)(z-x)