Home
Class 12
MATHS
Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc...

Prove that `|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the properties of determinant, prove that |(a^(2) +1, ab, ac),(ab, b^(2) + 1, bc),(ac, bc, c^(2)+1)| = 1+a^(2) + b^(2) + c^(2) .

Using properties of determinant show that : |(a^2,bc,c^2+ac),(a^2+ab,b^2,ac),(ab,b^2+bc,c^2)|=4a^2b^2c^2

Prove that |(a,b,ax+by),(b,c,bx+cy),(ax+by, bx + cy, 0)| = (b^(2)-ac)(ax^(2) + 2bxy + cy^(2)) .

Prove that |(3a, -a+b, -a+c),(a-b, 3b, c-b),(a-c, b-c, 3c)| = 3(a+b+c)(ab+bc+ca) .

Without expanding show that : |(bc,a,a^2),(ca,b,b^2),(ab,c,c^2)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Find the value of : |(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|

Using properties of determinant show that : |(bc,a,a^2),(ca,b,b^2),(ab,c,c^2)|=(b-c)(c-a)(a-b)(ab+bc+ca)

Prove that (a^2+2bc)/((a-b)(a-c))+(b^2+2ac)/((b-c)(b-a))+(c^2+2ab)/((c-a)(c-b))=3

Prove that a/(bc(a-b)(a-c))+b/(ca(b-c)(b-a))+c/(ab(c-a)(c-a))=1/(abc)