Home
Class 12
MATHS
If alpha=sin^(-1)(2/3)" and "beta=tan^(-...

If `alpha=sin^(-1)(2/3)" and "beta=tan^(-1)(1/2)`, where `0lt alpha,betalt(pi)/(2),` then find the value of `alpha-beta`.

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1)[(5sqrt(5)-9)/(8)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If "tan"^(-1)(x-1)/(x-2) +"tan"^(-1) (x+1)/(x+2) =(pi)/(4) , then find the value of x.

If sin^(-1) (1-x) -2"sin"^(-1)x =(pi)/(2) , then find the value of x.

If tan alpha=m/(m+1) and tan beta=1/(2m+1) ,prove that alpha+beta=pi/4 .

If alpha,beta are the zeroes of 2x^2+5x-9 ,then the value of alpha*beta is

Find cot^2 alpha- cos^2 alpha . .

If cos(alpha+beta)=4/5 , sin(alpha-beta)=5/13 and if 0 < alpha < pi /4 , 0 < beta < pi /4 , find the value of tan2alpha .

Find cot^2 theta - cot^2 alpha . .

If alpha and beta are the zeroes of the polynomial ax^2 + bx+ c , find the values of alpha^2+beta^2

beta of a given transistor is 99. What is the value of alpha ?