Home
Class 12
MATHS
If a system of equation – ax + y + z = 0...

If a system of equation `– ax + y + z = 0`
`x -by + z =0`
`x + y - cz = 0 ( a,b,c ne -1)` has a non-zero solution then `(1)/(1+ a) + (1)/(1 + b) + (1)/(1 + c) = `

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations and find the value of \(\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}\), we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \(-ax + y + z = 0\) 2. \(x - by + z = 0\) 3. \(x + y - cz = 0\) We can represent this system in matrix form as follows: \[ \begin{bmatrix} -a & 1 & 1 \\ 1 & -b & 1 \\ 1 & 1 & -c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Find the determinant of the coefficient matrix For the system to have a non-zero solution, the determinant of the coefficient matrix must be zero: \[ D = \begin{vmatrix} -a & 1 & 1 \\ 1 & -b & 1 \\ 1 & 1 & -c \end{vmatrix} \] Calculating the determinant \(D\): \[ D = -a \begin{vmatrix} -b & 1 \\ 1 & -c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & -c \end{vmatrix} + 1 \begin{vmatrix} 1 & -b \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} -b & 1 \\ 1 & -c \end{vmatrix} = bc - 1\) 2. \(\begin{vmatrix} 1 & 1 \\ 1 & -c \end{vmatrix} = -c - 1\) 3. \(\begin{vmatrix} 1 & -b \\ 1 & 1 \end{vmatrix} = 1 + b\) Substituting these back into the determinant \(D\): \[ D = -a(bc - 1) - (-c - 1) + (1 + b) \] Simplifying: \[ D = -abc + a - c - 1 + 1 + b = -abc + a + b - c \] Setting the determinant to zero for a non-zero solution: \[ -abc + a + b - c = 0 \] ### Step 3: Rearranging the equation Rearranging gives: \[ abc = a + b - c \] ### Step 4: Find the value of \(\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}\) Now, we need to compute: \[ \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \] Finding a common denominator: \[ = \frac{(1+b)(1+c) + (1+a)(1+c) + (1+a)(1+b)}{(1+a)(1+b)(1+c)} \] Expanding the numerator: 1. \((1+b)(1+c) = 1 + b + c + bc\) 2. \((1+a)(1+c) = 1 + a + c + ac\) 3. \((1+a)(1+b) = 1 + a + b + ab\) Adding these: \[ = 3 + 2(a + b + c) + (ab + ac + bc) \] Thus, the numerator becomes: \[ = 3 + 2(a + b + c) + (ab + ac + bc) \] ### Step 5: Final expression The denominator is: \[ (1+a)(1+b)(1+c) = 1 + a + b + c + ab + ac + bc + abc \] Using the relation \(abc = a + b - c\): Substituting this into the denominator: \[ = 1 + a + b + c + ab + ac + bc + (a + b - c) \] This simplifies to: \[ = 2 + 2(a + b + c) + ab + ac + bc \] ### Conclusion Thus, we have: \[ \frac{3 + 2(a + b + c) + (ab + ac + bc)}{2 + 2(a + b + c) + (ab + ac + bc)} = 1 \] Therefore, the final answer is: \[ \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION-PAPERS-2016

    BITSAT GUIDE|Exercise MATHEMATICS|45 Videos
  • QUESTION-PAPERS-2018

    BITSAT GUIDE|Exercise MATHEMATICS|45 Videos

Similar Questions

Explore conceptually related problems

The system of equations ax + y + z = 0 , -x + ay + z = 0 and - x - y + az = 0 has a non-zero solution if the real value of 'a' is

if the system of equation ax+y+z=0,x+by=z=0, and x+y+cz=0(a,b,c!=1) has a nontrival solution,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c)is:

If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + cy + z = 0 where a, b and c are non-zero non-unity, has a non-trivial solution, then value of (a)/(1 -a) + (b)/(1- b) + (c)/(1 -c) is

If the system of equation x=a(y+z),y=b(z+x),z=c(x+y),(a,b,c!=-1) has a non-zero solution then the value of (a)/(a+1)+(b)/(b+1)+(c)/(c+1) is

BITSAT GUIDE-QUESTION-PAPERS-2017-MATHEMATICS
  1. The function f (x) = x - |x - x ^(2) | , -1 le x le 1 is continuous on...

    Text Solution

    |

  2. If 4^n/(n+1) lt ((2n)!)/((n!)^2), then P(n) is true for

    Text Solution

    |

  3. If a system of equation – ax + y + z = 0 x -by + z =0 x + y - cz = 0...

    Text Solution

    |

  4. If f (x) = x ^(x) , then f (x) is increasing in interval :

    Text Solution

    |

  5. If x is real number, then ( x )/( x ^(2) - 5 x +9 ) must lies between

    Text Solution

    |

  6. Evaluate: lim(x->oo) { ((a1)^(1/x)+(a2)^(1/x)+.... +(an)^(1/x))/n}^(n...

    Text Solution

    |

  7. The value of cot ^(-1) 7 + cot ^(-1) 8 + cot ^(-1) 18 is

    Text Solution

    |

  8. If int "" (cos x - 1)/( sin x +1 ) e ^(x) dx is equal to :

    Text Solution

    |

  9. A random variable X has the probability distribution For the eve...

    Text Solution

    |

  10. The number of roots of equation cos x + cos 2x + cos 3x = 0 is ( 0 le ...

    Text Solution

    |

  11. The area under the curve y = | cos x - sin x |, 0 le c le (pi)/(2), an...

    Text Solution

    |

  12. If f (x) = {{:(( x log cos x )/( log (1 + x ^(2)))",", x ne 0), ( 0","...

    Text Solution

    |

  13. The maximum value of z = 3x + 2y subject to x + 2y ge 2 , x + 2y lt 8...

    Text Solution

    |

  14. A cylindrical gas container is closed at the top and open at the ...

    Text Solution

    |

  15. Let A, B , C be finite sets. Suppose that n (A) = 10, n (B) = 15, n (C...

    Text Solution

    |

  16. If f(z) = (7-z)/( 1-z^(2)), where z =1+2i, then |f (z) | is

    Text Solution

    |

  17. If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...

    Text Solution

    |

  18. Statement 1 : A five digit number divisible by 3 is to be formed using...

    Text Solution

    |

  19. The equation of one of the common tangent to the parabola y^(2) = 8x a...

    Text Solution

    |

  20. The matrix R(t) is defined by R(t)=[(cos t,sin t),(-sin t,cos t)]. Sho...

    Text Solution

    |