Home
Class 12
MATHS
Let A, B, and C are the angles of a plai...

Let A, B, and C are the angles of a plain triangle and `tan ""(A)/(2)=(1)/(3), tan ""(B)/(2)=(2)/(3)." Then "tan ""(C )/(2)` is equal to

A

`7//9`

B

`2//9`

C

`1//3`

D

`2//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \tan \frac{C}{2} \) given \( \tan \frac{A}{2} = \frac{1}{3} \) and \( \tan \frac{B}{2} = \frac{2}{3} \), we can use the following steps: ### Step 1: Use the angle sum property of triangles In a triangle, the sum of the angles is \( 180^\circ \). Therefore, we have: \[ A + B + C = 180^\circ \] This implies: \[ C = 180^\circ - (A + B) \] ### Step 2: Express \( \frac{A + B}{2} \) From the above equation, we can express \( \frac{A + B}{2} \): \[ \frac{A + B}{2} = 90^\circ - \frac{C}{2} \] ### Step 3: Use the tangent addition formula Using the tangent addition formula: \[ \tan\left(\frac{A + B}{2}\right) = \tan\left(90^\circ - \frac{C}{2}\right) = \cot\left(\frac{C}{2} \] Thus, we have: \[ \tan\left(\frac{A + B}{2}\right) = \cot\left(\frac{C}{2}\right) \] ### Step 4: Find \( \tan\left(\frac{A + B}{2}\right) \) Using the tangent addition formula: \[ \tan\left(\frac{A + B}{2}\right) = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \tan\frac{B}{2}} \] Substituting the values: \[ \tan\frac{A}{2} = \frac{1}{3}, \quad \tan\frac{B}{2} = \frac{2}{3} \] We calculate: \[ \tan\left(\frac{A + B}{2}\right) = \frac{\frac{1}{3} + \frac{2}{3}}{1 - \left(\frac{1}{3} \cdot \frac{2}{3}\right)} = \frac{1}{1 - \frac{2}{9}} = \frac{1}{\frac{7}{9}} = \frac{9}{7} \] ### Step 5: Relate \( \tan\left(\frac{C}{2}\right) \) to \( \tan\left(\frac{A + B}{2}\right) \) Since \( \tan\left(\frac{A + B}{2}\right) = \cot\left(\frac{C}{2}\right) \), we have: \[ \cot\left(\frac{C}{2}\right) = \frac{9}{7} \] ### Step 6: Find \( \tan\left(\frac{C}{2}\right) \) Using the relationship \( \tan\theta = \frac{1}{\cot\theta} \): \[ \tan\left(\frac{C}{2}\right) = \frac{1}{\cot\left(\frac{C}{2}\right)} = \frac{1}{\frac{9}{7}} = \frac{7}{9} \] Thus, the value of \( \tan\left(\frac{C}{2}\right) \) is: \[ \boxed{\frac{7}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION-PAPERS-2017

    BITSAT GUIDE|Exercise MATHEMATICS |45 Videos
  • RECTANGULAR COORDINATES AND STRAIGHT LINE

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|16 Videos

Similar Questions

Explore conceptually related problems

If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan""(B+C)/(2) +cos""(A+B)/(2) *csc""(C)/(2)=

1-tan(A)/(2)tan(B)/(2)=(2c)/(a+b+c)

In triangle ABC, if r_(1)=3r, then the value of tan((A)/(2))(tan((B)/(2))+tan((C)/(2))) is equal to

If A,B,C are the angles of a triangle such that tan A=1 and tan B=2 , then : tan C=……….

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to

(tan A)/(2)(tan B)/(2)+(tan B)/(2)(tan C)/(2)+(tan C)/(2)(tan A)/(2) =1

In an acute angled triangle ABC,if (tan A)/(2)=(tan B)/(3)=(tan C)/(5) then /_ABC is equal to

If A, B and C are angles of a triangle such than tan A = 1, tan B = 2, then what is the value of tan C ?

BITSAT GUIDE-QUESTION-PAPERS-2018-MATHEMATICS
  1. Number of solutions of equation sin 9 theta = sin theta in the interv...

    Text Solution

    |

  2. A pole stands vertically , inside a triangular park triangleABC. If th...

    Text Solution

    |

  3. Let A, B, and C are the angles of a plain triangle and tan ""(A)/(2)=(...

    Text Solution

    |

  4. If the amplitude of z-2-3i" is "pi//4, then the locus of z=x+iy is

    Text Solution

    |

  5. The roots of the equation x^(4)-2x^(3)+x-380=0 are

    Text Solution

    |

  6. Roots of the equation x^(2)+bx-c=0 (b,c gt 0) are

    Text Solution

    |

  7. In how many ways can 12 gentlemen sit around a round table so that thr...

    Text Solution

    |

  8. The number of ways in which first, second and third prizes can be give...

    Text Solution

    |

  9. The coefficient of x^(3) in the expansion of (x-(1)/(x))^(7) is:

    Text Solution

    |

  10. If x gt 0, then 1+(log(e^2)x)/(1!)+(log(e^2)x)^2/(2!).....

    Text Solution

    |

  11. If a, b, c are in G.P., then

    Text Solution

    |

  12. The locus of the point of intersection of the lines x=a((1-t^(2))/(1+t...

    Text Solution

    |

  13. The equation of the circle which passes through the point (4, 5) and h...

    Text Solution

    |

  14. Eccentricity of ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2))=1 if it passe...

    Text Solution

    |

  15. Consider the equation of a parabola y ^(2) + 4ax =0, where a gt 0. Whi...

    Text Solution

    |

  16. The value of underset(n rarr oo)lim (1+2+3+…n)/(n^(2)+100) is equal to...

    Text Solution

    |

  17. lim(x rarr0)sqrt((x-sin x)/(x+sin^(2)x))

    Text Solution

    |

  18. The probability of getting 10 in a single throw of three fair dice is

    Text Solution

    |

  19. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  20. If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} is an orthogonal matrix, then

    Text Solution

    |