Home
Class 12
MATHS
Let vec a = hati - hat k, vec b =x hati ...

Let `vec a = hati - hat k, vec b =x hati + hatj+ (1-x) hat k and vec c = y hat I +x hat j +(1+x-y) hatk`. Then `[vec a, vec b, vec c]` depends on

A

only y

B

only x

C

both x and y

D

neither x nor y

Text Solution

AI Generated Solution

The correct Answer is:
To determine the dependence of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we will calculate the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) using the determinant of a matrix formed by these vectors. ### Step-by-Step Solution: 1. **Define the Vectors**: \[ \vec{a} = \hat{i} - \hat{k} \] \[ \vec{b} = x\hat{i} + \hat{j} + (1-x)\hat{k} \] \[ \vec{c} = y\hat{i} + x\hat{j} + (1+x-y)\hat{k} \] 2. **Write the Coefficients**: The coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) for each vector are: - For \(\vec{a}\): \(1, 0, -1\) - For \(\vec{b}\): \(x, 1, 1-x\) - For \(\vec{c}\): \(y, x, 1+x-y\) 3. **Set Up the Determinant**: The scalar triple product can be calculated using the determinant: \[ [\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix} \] 4. **Calculate the Determinant**: Using the determinant formula, we expand it as follows: \[ = 1 \cdot \begin{vmatrix} 1 & 1-x \\ x & 1+x-y \end{vmatrix} - 0 + (-1) \cdot \begin{vmatrix} x & 1 \\ y & x \end{vmatrix} \] Now, calculating the first determinant: \[ = 1 \cdot (1(1+x-y) - (1-x)x) = 1 + x - y - x + x^2 = x^2 - y + 1 \] For the second determinant: \[ = -1 \cdot (x \cdot x - 1 \cdot y) = - (x^2 - y) \] Combining these results: \[ [\vec{a}, \vec{b}, \vec{c}] = (x^2 - y + 1) - (x^2 - y) = 1 \] 5. **Conclusion**: The scalar triple product \([\vec{a}, \vec{b}, \vec{c}] = 1\), which is a constant and does not depend on \(x\) or \(y\). ### Final Answer: The vectors \([\vec{a}, \vec{b}, \vec{c}]\) depend on neither \(x\) nor \(y\).
Promotional Banner

Topper's Solved these Questions

  • QUESTION-PAPERS-2017

    BITSAT GUIDE|Exercise MATHEMATICS |45 Videos
  • RECTANGULAR COORDINATES AND STRAIGHT LINE

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|16 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(k), vec(c ) = y hat(i) + x hat(j) + (1+ x- y)hat(k) then vec(a).(vec(b) xx vec(c )) depends on

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

If vec(a)=ht(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yhat(i)+xhat(j)+(1+x-y)hat(k) . then vec(a).(vec(b) xx vec (c)) depends on

Let vec a = hat i + hat j + hat k, vec b = hat i + 4 hat j - hat k, vec c = hat i + hat j + 2 hat k and hat s be a the unit vector the magnitude of the vector (vec a .vec s)(vec b xx vec c) + (vec b. vec s)(vec c xx vec a) + ( vec c.vec s)(vec a xx vec b) is equal to (A) 1 (B) 2 (C) 3 (D) 4

If vec A=hat I + 2 hat j -3 hat k , vec B =2 hat I -hat j + hat k and vec Chat I -3 hat j + 2 hat k , then find vec A xx ( vec B xx vec C).

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

vec a = (hat i + hat j + hat k), vec a * vec b = 1 and vec a xxvec b = hat j-hat k. Then vec b is

Given that vec A= A_x hat i+ A_y hatj + A_z hatk and vec B = B_x hat i+B_y hat j +B_z hat k . Find vec A xx vec B

If quad vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k find |3vec a-2vec b+4vec c|

BITSAT GUIDE-QUESTION-PAPERS-2018-MATHEMATICS
  1. If f(x)={(sin x;x rational) (cos x;x is irrational) then the function ...

    Text Solution

    |

  2. If : f(x) {:(=1", ... "0 ltx le (3pi)/4), (= 2 ...

    Text Solution

    |

  3. The value of c in (0, 2) satisfying the mean value theorem for the fun...

    Text Solution

    |

  4. If y=(x)/(x+1)+(x+1)/(x)," then "(d^(2)y)/(dx^(2)) at x=1 is equal to

    Text Solution

    |

  5. If y=e^(2x), then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

    Text Solution

    |

  6. A ball is dropped from a platform 19.6m high. Its position function is

    Text Solution

    |

  7. The value of the integral int (a)^(b) (sqrt(x)dx)/(sqrt(x)+sqrt(1+b-x...

    Text Solution

    |

  8. int (e^(x^(2)) (2x+x^(3)))/((3+x^(2))^(2))dx is equal to :

    Text Solution

    |

  9. If overset(a)underset(0) int f(2a-x)dx = m and overset(a)underset(0)in...

    Text Solution

    |

  10. An integrating factor of the differential equation sin x (dy)/(dx)...

    Text Solution

    |

  11. The expression satisfying the differential equation (x^(2)-1) (dy)/(dx...

    Text Solution

    |

  12. Let vec a = hati - hat k, vec b =x hati + hatj+ (1-x) hat k and vec c ...

    Text Solution

    |

  13. If hat(i)+hat(j), hat(j)+hat(k), hat(i)+hat(k) are the position vector...

    Text Solution

    |

  14. The projection of line joining (3, 4, 5) and (4, 6, 3) on the line joi...

    Text Solution

    |

  15. Which of the following statements is correct?

    Text Solution

    |

  16. If the constraints in a linear programming problem are changed

    Text Solution

    |

  17. In a binomial distribution, the mean is 4 and variance is 3. Then its ...

    Text Solution

    |

  18. The sum 1+(1+a)/(2!) +(1+a+a^(2))/(3!)+....oo is equal to

    Text Solution

    |

  19. The Boolean expression ~(p vee q) vee (~p wedge q) is equivalent to :

    Text Solution

    |

  20. If in a frequency distribution, the mean and median are 21 and 22 resp...

    Text Solution

    |