Home
Class 12
PHYSICS
A metal wire is bent into a circle of ra...

A metal wire is bent into a circle of radius 10 cm. It is given a charge of `200 muC`, which spreads on it uniformly, Calculate the electric potential at its centre.

Promotional Banner

Topper's Solved these Questions

  • ELECTRIC POTENTIAL

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos
  • ELECTRIC FIELD

    MODERN PUBLICATION|Exercise EXERCISE|95 Videos
  • ELECTRICAL MEASUREMENTS

    MODERN PUBLICATION|Exercise EXERCISE|44 Videos

Similar Questions

Explore conceptually related problems

A hexagon of side 0.1 m has a charge 10 mu C at each of its vertices. Calculate the electric potential at the centre of the hexagon.

A regular hexagon of side 10 cm has a charge 5 muC at each of its vertices. Calculate the potential at the centre of the hexagon.

A spherical conductor of radius 12 cm has a charge of 1.6 xx 10^-7C distributed uniformly on its surface. What is the electric field at a point 18 cm from the centre of the sphere?

A spherical conductor of radius 12 cm has a charge of 1.6 xx 10^-7C distributed uniformly on its surface. What is the electric field inside the sphere?

A spherical conductor of radius 12 cm has a charge of 1.6 xx 10^-7C distributed uniformly on its surface. What is the electric field just outside the sphere?

A hollow metal sphere of radius 5 cm is charged, such that the potential on its surfae is 10 V. The potential at the centre of the sphere is

A point charge of 12muC is located at the centre of a cube of side 1 m. Calculate the electric flux through each face of the cube.

Calculate the length of the arc of a circle of radius 31.0 cm which subtends an angle of pi/6 at the centre.

A charge of 4xx10^-9 C is distributed uniformly over the circumference of a conducting ring of radius 0.3 m. Calculate the field intensity at a point on the axis of the ring at 0.4 m from its centre. Also, calculate the electri field at the centre of the ring.

MODERN PUBLICATION-ELECTRIC POTENTIAL-EXERCISE
  1. A metal wire is bent into a circle of radius 10 cm. It is given a char...

    Text Solution

    |

  2. Find an expression for line integral of electric intensity.

    Text Solution

    |

  3. The work done in moving a positive charge on an equipotential surface ...

    Text Solution

    |

  4. Show that the work done in moving a unit charge along a closed path is...

    Text Solution

    |

  5. Derive an expression for electric potential at a point due to a point ...

    Text Solution

    |

  6. Define electric potential. What is the SI unit of potential? Obtain an...

    Text Solution

    |

  7. Define electric potential at a point. Derive an expression for the pot...

    Text Solution

    |

  8. Derive an expression for the electric potential at a point along the a...

    Text Solution

    |

  9. Derive an expression for electric field intensity at a distance r from...

    Text Solution

    |

  10. Deduce an expression for electric potential due to an electric dipole ...

    Text Solution

    |

  11. Deduce an expression for electric potential due to an electric dipole ...

    Text Solution

    |

  12. How is electric field at a point related to potential gradient?

    Text Solution

    |

  13. How is electric field at a point related to potential gradient?

    Text Solution

    |

  14. What is the shape of equipotential surfaces for a uniform electric fie...

    Text Solution

    |

  15. Draw the equipotential surfaces due to an electric dipole. Locate the ...

    Text Solution

    |

  16. Obtain an expression for potential energy of the configuration of thr...

    Text Solution

    |

  17. Depict the equipotential surfaces for a system of two identical positi...

    Text Solution

    |

  18. Deduce the expression for the potential energy of a system of two poin...

    Text Solution

    |

  19. Two uniformly large parallel thin plates having charge densities +sigm...

    Text Solution

    |

  20. Two point charges q1 and q2 are kept at a distance of r(12) in air. De...

    Text Solution

    |

  21. Derive an expression for potential at a point due to a group of point ...

    Text Solution

    |