Home
Class 14
MATHS
√(1+sin θ) ( 1 - sin θ) is equal to...

√(1+sin θ) ( 1 - sin θ) is equal to

A

`sec theta + tan theta`

B

`sec theta - tan theta`

C

`cos theta`

D

`cosec theta - cot theta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (2sin a)/(1+cos a+sin a)=y, then prove that (1-cos a+sin a)/(1+sin a) is also equal to

Sin^(-1) (1) is equal to

Sin ^(–1)(1) is equal to

sin^(-1)(sin3)+sin^(-1)(sin4)+sin^(-1)(sin5) is equal to

If ^( If )(1+sin A)(1+sin B)(I+sin C)=(1-sin A)(1-sin B)(1-sin C) ,then each side is equal to

the sum (1)/(sin45^(@)sin46^(@))+(1)/(sin47^(@)sin48^(@))+(1)/(sin49^(@)sin50^(@))+...+(1)/(sin133^(@)sin134^(@)) is equal to

If sin^(-1)1 + "sin"^(-1)(4)/(5)=sin^(-1)x , then what is x equal to?

If {(2 sin θ – cos θ) / (cos θ + sin θ)} = 1, then the value of cot θ is (A) 1/2 (B) 1/3 (C ) 3 (D) 2

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to