Home
Class 14
MATHS
sqrt a^-1b. sqrtb^-1c. sqrtc^-1 a is equ...

`sqrt a^-1b. sqrtb^-1c. sqrtc^-1 a` is equal to

A

abc

B

`sqrtabc

C

`frac(1)(abc)`

D

1

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers,then sqrt(a^(-1)b)x sqrt(b^(-1)c)x sqrt(c^(-1)a) is equal to: 1 (b) abc(c)sqrt(abc)(d)(1)/(abc)

If a>0,b>0 then sqrt(-a) . sqrtb is equal to

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2)) is equal to a+b+c( b )a^(2)b^(2)c^(2)2abc(d)4abc

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) (B) (B) (C) 0(D)

If a + 1/ b =1 and b+1/c =1. then c+ 1/a is equal to

In a triangle ABC,if A=30^(@) and (b)/(c)=(2+sqrt(3)+sqrt(2)-1)/(2+sqrt(3)-sqrt(2)+1) then C, is equal to

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1