Home
Class 14
MATHS
If 4 x^2 = sqrt5 + 2, then the value of ...

If `4 x^2 = sqrt5 + 2,` then the value of `4 x^2 - frac(1) (4 x^2 ) is

A

1

B

-1

C

16

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4x^2 = \sqrt{5} + 2 \) and find the value of \( 4x^2 - \frac{1}{4x^2} \), we will follow these steps: ### Step 1: Substitute the value of \( 4x^2 \) We know from the problem statement that: \[ 4x^2 = \sqrt{5} + 2 \] ### Step 2: Calculate \( \frac{1}{4x^2} \) To find \( \frac{1}{4x^2} \), we take the reciprocal of \( 4x^2 \): \[ \frac{1}{4x^2} = \frac{1}{\sqrt{5} + 2} \] ### Step 3: Rationalize the denominator To simplify \( \frac{1}{\sqrt{5} + 2} \), we multiply the numerator and denominator by the conjugate of the denominator, which is \( \sqrt{5} - 2 \): \[ \frac{1}{\sqrt{5} + 2} \cdot \frac{\sqrt{5} - 2}{\sqrt{5} - 2} = \frac{\sqrt{5} - 2}{(\sqrt{5})^2 - 2^2} \] Calculating the denominator: \[ (\sqrt{5})^2 - 2^2 = 5 - 4 = 1 \] Thus, we have: \[ \frac{1}{4x^2} = \sqrt{5} - 2 \] ### Step 4: Substitute back into the expression Now we substitute \( 4x^2 \) and \( \frac{1}{4x^2} \) back into the expression \( 4x^2 - \frac{1}{4x^2} \): \[ 4x^2 - \frac{1}{4x^2} = (\sqrt{5} + 2) - (\sqrt{5} - 2) \] ### Step 5: Simplify the expression Now, simplify the expression: \[ (\sqrt{5} + 2) - (\sqrt{5} - 2) = \sqrt{5} + 2 - \sqrt{5} + 2 = 4 \] ### Final Answer Thus, the value of \( 4x^2 - \frac{1}{4x^2} \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sqrt3+ sqrt2, then the value of (x +frac(1)(x)) is

If , 4x = sqrt5+2 , then the value of (x-1/(16x)) is

If sqrt3x - 2=2sqrt3 + 4 , then the value of x is

If 4x=sqrt(5)+2 then the value of 4x-(1)/(16x) is

If x = 1 + sqrt(2) , then what is the value of x^4 - 4x^3 + 4x^2 ?