Home
Class 14
MATHS
If root(3)(32) = 2^x, then x is equal to...

If `root(3)(32) = 2^x`, then x is equal to

A

5

B

3

C

`frac(3)(5)`

D

`frac(5)(3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(x)=root(3)(32), then x is equal to a.5b.3c.(3)/(5) d.(5)/(3)

Let x=root(3)(2+sqrt5)+root(3)(2-sqrt5), then x^3+3x is equal to (i)1 (ii)2 (iii)3 (iv)4

If log_(x)(256)=(8)/(5), then x is equal to (1)64(2)16(3)32

If 99xx21-root(3)(x)=1968 then x equals

The HCF of two polynomials p(x) and q(x) is 2x (x + 2) and LCM is 24 (x + 2)^(2) (x - 2). If p(x) = 8x^(3) + 32x ^(2)+ 32x, then what is q(x) equal to ?

Let I= int_(0)^(20 20) ( root(3) (x^2) + root(3) ( (1010-x)^(2) ) )/( root(3)(x^(2) ) + 2 root(3) ((1010-x)^(2)) + root(3) ( (2020 - x)^(2) ) dx then (I)/( 100) is equal to

If f(x)=27x^(3)+(1)/(x^(3)) and alpha,beta are the roots of the equation 3x+(1)/(x)=2, then -f(alpha) is equal to

If 2^(2x-y)=32 and 2^(x+y)=16 then x^2+y^2 is equal to