Home
Class 14
MATHS
If x = p + (1)/(p) and y = p - (1)/( p...

If `x = p + (1)/(p) and y = p - (1)/( p)` then the value of ` x^(4) - 2x^(2) y^(2) + y^(4)` is

A

D

B

B

C

C

D

A

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(p+q)/(p-q) and y=(p-q)/(p+q) then the value of (x-y)/(x+y) is

If p(y) =y(y-1)(y+2) then find the value of p(0)+p(1)+p(-2)

If p(4)=3x^(2)+2x-2, then the value of p(3)-p(-1)+p((1)/(2)) is

If x=(sin p)/(cos^(2)p),y=(cos p)/(sin^(2)p) and sin p+cos p=(1)/(2) ,then find the value of (44)/((x+y))

If p(x) =x^(2)-4x+3, then evaluate p(2) -p(-1)+p((1)/(2)) .