Home
Class 14
MATHS
The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3...

The value of `(1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3))+...+(1)/(sqrt(100)+sqrt(99))` is

A

(A) 1

B

(B) 5

C

(c ) 9

D

(D) 10

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

the value of 3(1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3))+.........+(1)/(sqrt(16)+sqrt(15)) is

The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+........+(1)/(sqrt(8) + sqrt(9)) is

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+...(1)/(sqrt(99)+sqrt(100))

Determine the value of (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+1+(1)/(sqrt(120)+sqrt(121)) (a) 8 (b) 10 (c) sqrt(120) (d) 12sqrt(2)

Prove that (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+....+(1)/(sqrt(8)+sqrt(9))=2

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))