Home
Class 14
MATHS
(frac(1) (216))^(frac(2)(3)) div (frac(1...

`(frac(1) (216))^(frac(2)(3)) div (frac(1)(27))^(frac(4)(3))` is equal to

A

`frac(3)(4)`

B

`frac(2)(3)`

C

`frac(9)(4)`

D

`frac(1)(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{1}{216})^{\frac{2}{3}} \div (\frac{1}{27})^{\frac{4}{3}}\), we will follow these steps: ### Step 1: Factor the numbers First, we need to factor the numbers 216 and 27 into their prime factors. - **For 216**: - \(216\) is even, so we divide by \(2\): - \(216 \div 2 = 108\) - \(108 \div 2 = 54\) - \(54 \div 2 = 27\) - Now, \(27\) is \(3^3\) (since \(3 \times 3 \times 3 = 27\)). - Therefore, \(216 = 2^3 \times 3^3\). - **For 27**: - \(27 = 3^3\). ### Step 2: Rewrite the expression using prime factors Now we can rewrite the original expression using these factors: \[ \left(\frac{1}{2^3 \times 3^3}\right)^{\frac{2}{3}} \div \left(\frac{1}{3^3}\right)^{\frac{4}{3}} \] ### Step 3: Apply the exponent rules Using the exponent rules, we can simplify each part: \[ \left(\frac{1}{2^3 \times 3^3}\right)^{\frac{2}{3}} = \frac{1^{\frac{2}{3}}}{(2^3 \times 3^3)^{\frac{2}{3}}} = \frac{1}{2^{2} \times 3^{2}} = \frac{1}{4 \times 9} = \frac{1}{36} \] For the second part: \[ \left(\frac{1}{3^3}\right)^{\frac{4}{3}} = \frac{1^{\frac{4}{3}}}{(3^3)^{\frac{4}{3}}} = \frac{1}{3^{4}} = \frac{1}{81} \] ### Step 4: Rewrite the division as multiplication Now we rewrite the division as multiplication by the reciprocal: \[ \frac{1}{36} \div \frac{1}{81} = \frac{1}{36} \times \frac{81}{1} = \frac{81}{36} \] ### Step 5: Simplify the fraction Now we simplify \(\frac{81}{36}\): - Both numbers can be divided by \(9\): \[ \frac{81 \div 9}{36 \div 9} = \frac{9}{4} \] ### Final Answer Thus, the final answer is: \[ \frac{9}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(2-frac(1)(3))(2-frac(7)(5))(2-frac(997)(999)) is equal to

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)} div (frac(1)(4))^(-3)= ?

(frac(-1)(2))^(3)= ?

(frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

1 + frac(1)(2) + frac(1) (4) + frac(1)(7) + frac(1)(14) + frac(1)(28) is equal to

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

(frac(-2)(3))^(10) div (frac(-2)(3))^(8)= ?

Solve (1-frac(1)(2))(1-frac(1)(3))(1-frac(1)(4))....(1-frac(1)(n))

Write each of the following in power notation: ( i ) frac(5)(7)xxfrac(5)(7)xxfrac(5)(7)xxfrac(5)(7) ( ii ) (frac(-4)(3)) xx (frac(-4)(3)) xx (frac(-4)(3)) xx (frac(-4)(3)) xx (frac(-4)(3)) ( iii ) (frac(-1)(6)) xx (frac(-1)(6)) xx (frac(-1)(6)) ( iv ) (-8) xx (-8) xx (-8) xx (-8) xx (-8)

(frac(-2)(5))^(7) div (frac(-2)(5))^(5)= ?