Home
Class 14
MATHS
(2-frac(1)(3))(2-frac(7)(5))(2-frac(997)...

`(2-frac(1)(3))(2-frac(7)(5))(2-frac(997)(999))` is equal to

A

(A) `frac(1001)(999)`

B

(B) `frac(999)(1001`

C

(C ) `frac(1001)(3)`

D

(D)` frac(5)(1001)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

When simplified,the product (2-(1)/(3))(2-(3)/(5))(2-(5)/(7))(2-(997)/(999)) is equal to (5)/(999) (b) (1001)/(999) (c) (1)/(1001) (d) (1001)/(3)

(frac(1) (216))^(frac(2)(3)) div (frac(1)(27))^(frac(4)(3)) is equal to (A) frac(3)(4) (B) frac(2)(3) (C ) frac(4)(9) (D) frac(1)(8)

(2-(1)/(3))(2-(3)/(5))(2-(5)/(7))....(2-(997)/(999)) is equal to

(frac(2)(3))^(-5)= ?

1 + frac(1)(2) + frac(1) (4) + frac(1)(7) + frac(1)(14) + frac(1)(28) is equal to

LCM of frac(2)(3) , frac(4)(9) , frac(7)(12) is

{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

If (1-frac(1)(2)) (1-frac(1)(3)) (1-frac(1)(4) ) _____ (1-frac(1)(40)) = frac(xx)(40) , then x is equal to