Home
Class 14
MATHS
If x=a sec theta, y=btantheta, then x^2/...

If x=a sec `theta`, y=b`tantheta`, then `x^2/a^2-y^2/b^2` is (A) -1 (B) 0 (C) 1 (D) 2

A

A

B

D

C

C

D

B

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sec theta and y=b tan theta find (x^(2))/(a^(2))-(y^(2))/(b^(2))

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

If x=a sec theta and y=b tan theta, then b^(2)x^(2)-a^(2)y^(2)=( a )ab(b)a^(2)-b^(2)(c)a^(2)+b^(2) (d) a^(2)b^(2)

If x=a sec theta , y=b tan theta find (d^2 y )/( dx^2) at x = (pi )/( 6)

If x = a sec theta , y =b tan theta , then (d^2y)/(dx^2) at theta = pi/6 is :

x=a tantheta , y=b sectheta , y^2/b^2-x^2/a^2

If x=a cos theta and y=b sin theta, then b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2)( b) ab(c)a^(4)b^(4)(d)a^(2)+b^(2)

if x=a sec^(n)theta,y=b tan^(n)theta then ((x)/(a))^((2)/(n))-((y)/(b))^((2)/(n))

If x=a sec theta,y=b tan theta, prove that (d^(2)y)/(dx^(2))=-(b^(4))/(a^(2)y^(3))

If x=a sin theta and y=b cos theta , then prove : (x^(2))/(a^(2))+(y^(2))/(b^(2))=1