Home
Class 14
MATHS
The value of sin (45° + θ) – cos (45° – ...

The value of sin (45° + θ) – cos (45° – θ) is
(A) 2 cos θ (B) 2 sin θ (C) 1 (D) 0

A

A

B

C

C

D

D

B

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2cos^(2)θ + 3sinθ = 3 , where 0^circ lt θ lt 90^circ , then what is the value of sin^(2)2θ + cos^2 (θ) + tan^(2)2θ + cos^(2) 2θ = ? यदि 2cos^(2)θ + 3sinθ = 3 , जहा 0^circ lt θ lt 90^circ तो sin^(2)2θ + cos^(2(θ + tan^(2)2θ + cos^(2)2θ का मान बराबर है :

If 5sin θ – 4cos θ = 0, 0^circ lt θ lt 90^circ , then the value of (5sinθ− 2cosθ)/ (5 sin θ + 3cosθ) is: यदि 5sin θ – 4cos θ = 0, 0^circ lt θ lt 90^circ है, तो (5sinθ− 2cosθ)/ (5 sin θ + 3cosθ) का मान है:

What is the value of cosec (65^circ+ θ) – sec(25^circ – θ) + tan^(2)20^circ – cosec^(2)70^circ ? cosec (65^circ+ θ) – sec(25^circ – θ) + tan^(2)20^circ – cosec^(2)70^circ का मान क्या है?

If {(2 sin θ – cos θ) / (cos θ + sin θ)} = 1, then the value of cot θ is (A) 1/2 (B) 1/3 (C ) 3 (D) 2

If cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , then what is the value of 4cosecθ + cotθ ? यदि cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , है तो 4cosecθ + cotθ का मान कितना है?

The value of ((sin(78^circ +θ) - cos (12^circ +θ) +(tan^(2)70^circ - cosec^(2)20^circ))/ (sin 25^circ cos 65^circ + cos 25^circ sin 65^circ) is: ((sin(78^circ +θ) - cos (12^circ +θ) +(tan^(2)70^circ - cosec^(2)20^circ))/ (sin 25^circ cos 65^circ + cos 25^circ sin 65^circ) का मान है :

Let S be the sum of all values of θ which satisfy the conditions 2 cos 2 θ + 3 sin θ = 0 and − 2 π ≤ θ ≤ 2 π .Then S =

The value of (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) is : (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) का मान बराबर है :

A line makes angle θ 1 ​ ,θ 2 ​ ,θ 3 ​ ,θ 4 ​ with the diagonals of the cube. Show that cos^ 2 θ 1 ​ +cos^ 2 θ 2 ​ +cos^ 2 θ 3 ​ +cos^ 2 θ 4 ​ = 3/ 4 ​ ?

Let f ( θ ) = sin θ ⋅ sin ( 60^ ∘ + θ ) sin ( 60^ ∘ − θ ) then 1.) The Minimum of f ( θ ) is ' − 1 ' 2.) The Maximum of f ( θ ) is 1/4 , 3.) The Range of f ( θ ) is [ − 1/3 , 1/4 ] , 4.) The Range of f ( θ ) is [ − 1/4 , 1/4 ]