Home
Class 14
MATHS
If x = 7 - 4 sqrt(3) , then the value ...

If ` x = 7 - 4 sqrt(3)` , then the value of `(x + (1)/(x))` is

A

0

B

1

C

4

D

-4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=7-4sqrt(3), then the value of x+(1)/(x) is:

If x=(7-4sqrt(3)), then the value of (x+(1)/(x)) is 3sqrt(3)( b 8sqrt(3)(c)14(d)14+8sqrt(3)

If x=7-4sqrt(3) then find the value of x^(2)-(1)/(x^(2))

If x=7-4sqrt(3) then find the value of sqrt(x)+(1)/(sqrt(x))

If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .