Home
Class 14
MATHS
If 5 tan theta =4 , then frac(5sin theta...

If `5 tan theta =4` , then `frac(5sin theta - 3cos theta )(5 sin theta + 2cos theta )` is equal to

A

`frac(1)(4)`

B

`frac(1)(6)`

C

`frac(1)(3)`

D

`frac(2)(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Given:** \[ 5 \tan \theta = 4 \] ### Step 1: Find \(\tan \theta\) From the equation, we can express \(\tan \theta\) as: \[ \tan \theta = \frac{4}{5} \] ### Step 2: Construct a right triangle Using the definition of tangent, we can construct a right triangle where: - Opposite side (perpendicular) = 4 - Adjacent side (base) = 5 ### Step 3: Calculate the hypotenuse Using the Pythagorean theorem: \[ h = \sqrt{(4^2) + (5^2)} = \sqrt{16 + 25} = \sqrt{41} \] ### Step 4: Find \(\sin \theta\) and \(\cos \theta\) Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{\sqrt{41}} \] \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{5}{\sqrt{41}} \] ### Step 5: Substitute \(\sin \theta\) and \(\cos \theta\) into the expression We need to evaluate: \[ \frac{5 \sin \theta - 3 \cos \theta}{5 \sin \theta + 2 \cos \theta} \] Substituting the values of \(\sin \theta\) and \(\cos \theta\): \[ = \frac{5 \left(\frac{4}{\sqrt{41}}\right) - 3 \left(\frac{5}{\sqrt{41}}\right)}{5 \left(\frac{4}{\sqrt{41}}\right) + 2 \left(\frac{5}{\sqrt{41}}\right)} \] ### Step 6: Simplify the expression This simplifies to: \[ = \frac{\frac{20}{\sqrt{41}} - \frac{15}{\sqrt{41}}}{\frac{20}{\sqrt{41}} + \frac{10}{\sqrt{41}}} \] Combining the fractions: \[ = \frac{\frac{20 - 15}{\sqrt{41}}}{\frac{20 + 10}{\sqrt{41}}} \] \[ = \frac{\frac{5}{\sqrt{41}}}{\frac{30}{\sqrt{41}}} \] ### Step 7: Further simplify The \(\sqrt{41}\) cancels out: \[ = \frac{5}{30} = \frac{1}{6} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{6} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta in the first quadrant and 5 tan theta =4 " then " ( 5 sin theta - 3 sin theta)/( sin theta + 2 cos theta) is equal to

If 5tan theta=4, then (5sin theta-3cos theta)/(5sin theta+2cos theta) is equal to 0 (b) 1 (c) (1)/(6)(d)6

If sec theta = (13)/(5) then (2 sin theta - 3 cos theta )/( 4 sin theta - 9 cos theta) is equal to

If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

If 5tan theta=4 then value of ((5sin theta-3cos theta)/(5sin theta+3cos theta))=

If 5 tan theta = 4 then value of ((5sintheta-3cos theta)/(5sin theta+3costheta)) is

If 5 tan theta = 4 , show that ( 5 sin theta - 3 cos theta)/(5 sin theta + 3 cos theta) = (1)/(7)