Home
Class 14
MATHS
If pq + qr + rp = 0, then what is the va...

If `pq + qr + rp = 0`, then what is the value of `(p^(2))/(p^(2) - qr) + (q^(2))/(q^(2) - rp) + (r^(2))/(r^(2) - pq)` ?

A

0

B

1

C

`-1`

D

3

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp) + (r^(2))/(r^(2) - pq)= ?

Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)/(r^(2) - pq) = ?

Find the value of (p^(2)+q^(2))/(r^(2)+s^(2)) , if p:q=r:s

Find the value if (p^(2)+q^(2))/(r^(2)+s^(2)) if p:q: : r:s

If pqr = 1 then find the value of log_(rq)p+log_(rp)q+log_(pq)r .

If 2p + 3q = 12 and 4p^(2) + 4pq - 3q^(2) = 126 , then what is the value of p + 2q ?

The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p)/x^(q))^(1/(pq) is equal to:

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq