Home
Class 14
MATHS
If x+y+z=0 then what is the value of ...

If `x+y+z=0` then what is the value of
`(1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2))`?

A

`(1)/(x^(2) + y^(2) + z^(2))`

B

1

C

`-1`

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(x^(2),1,y^(2)+z^(2)),(y^(2),1,z^(2)+x^(2)),(z^(2),1,x^(2)+y^(2)):}| is :

If x+y+z=xyz, then value of (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))(x)/(1-x^(2))(y)/(1-y^(2))(z)/(1-z^(2))

If x=1, y=2, z=-1 then find the value of z^2-2xy(x-y)

If x,y,z are distinct real numbers then the value of ((1)/(x-y))^(2)+((1)/(y-z))^(2)+((1)/(z-x))^(2) is

The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y^(2)-1/z^(2))(1/z^(2)-1/x^(2))) is

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2))

If x+y+z=xzy , prove that : (2x)/(1-x^2) + (2y)/(1-y^2) + (2z)/(1-z^2) = (2x)/(1-x^2) (2y)/(1-y^2) (2z)/(1-z^2)

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)