Home
Class 14
MATHS
How many terms are there in ...

How many terms are there in the following product?
`(a_(1) + a_(2) + a_(3))(b_(1) + b_(2) + b_(3) + b_(4))(c_(1) + c_(2) + c_(3) + c_(4) + c_(5))`

A

A)15

B

B)30

C

C)45

D

D)60

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk,vecb=b_(2)hatj+b_(3)hatk and vecc=c_(1)hati+c_(2)hatj+c_(3)hatk gve three non-zero vectors such that vecc is a unit vector perpendicular to both veca and vecb . If the angle between veca and vecb is pi/6 , then prove that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|p=1/4 (a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb=b_(1)hati+b_(2)hatj+b_(3)hatk and vecc=c_(1)hati+c_(2)hatj+c_(3)hatk be three non zero vectors such that vecc is a unit vector perpendicular to both veca and vecb . If the angle between veca and vecb is (pi)/6 , then |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|^(2) is equal to

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If a and b are distinct positive real numbers such that a, a_(1), a_(2), a_(3), a_(4), a_(5), b are in A.P. , a, b_(1), b_(2), b_(3), b_(4), b_(5), b are in G.P. and a, c_(1), c_(2), c_(3), c_(4), c_(5), b are in H.P., then the roots of a_(3)x^(2)+b_(3)x+c_(3)=0 are

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

" if " x_(i) =a_(i) b_(i) C_(i), i= 1,2,3 are three- digit positive integer such that each x_(i) is a mulptiple of 19 then prove that det {{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}} is divisible by 19.

Given a_(i)^(2) + b_(i)^(2) + c_(i)^(2) = 1, i = 1, 2, 3 and a_(i) a_(j) + b_(i) b_(j) + c_(i) c_(j) = 0 (i !=j, i, j =1, 2, 3) , then the value of the determinant |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))| , is