Home
Class 14
MATHS
If a+b+1=0 then what is the value of (a^...

If `a+b+1=0` then what is the value of `(a^(3)+b^(3)+1-3ab)`?

A

`-1`

B

1

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + 1 - 3ab \) given that \( a + b + 1 = 0 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ a + b + 1 = 0 \] From this, we can express \( a + b \): \[ a + b = -1 \] 2. **Use the identity for \( a^3 + b^3 \)**: The identity for the sum of cubes is: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] We can also express \( a^2 + b^2 \) using the square of the sum: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting \( a + b = -1 \): \[ a^2 + b^2 = (-1)^2 - 2ab = 1 - 2ab \] 3. **Substituting into the identity**: Now, substituting \( a + b \) and \( a^2 + b^2 \) into the identity for \( a^3 + b^3 \): \[ a^3 + b^3 = (-1)((1 - 2ab) - ab) = - (1 - 2ab - ab) = - (1 - 3ab) \] Thus, we have: \[ a^3 + b^3 = -1 + 3ab \] 4. **Now substitute into the expression we need to evaluate**: We need to find: \[ a^3 + b^3 + 1 - 3ab \] Substituting \( a^3 + b^3 \): \[ = (-1 + 3ab) + 1 - 3ab \] 5. **Simplifying the expression**: \[ = -1 + 3ab + 1 - 3ab = 0 \] ### Final Result: Thus, the value of \( a^3 + b^3 + 1 - 3ab \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1A |104 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

If a + b + 1 = 0, then the value of (a^(3) + b^(3) +1 -3ab) is

If a-b=1 and ab=6 then what is the value of (a^(3)-b^(3))?

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?

If a/b + b/a -1=0 , then the value of a^3 +b^3 is

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1B
  1. If a+b+1=0 then what is the value of (a^(3)+b^(3)+1-3ab)?

    Text Solution

    |

  2. If x=(0.08)^(2), y=(1)/((0.08)^(2)) and z=(1-0.08)^(2)-1 then which of...

    Text Solution

    |

  3. If x^(4)+(1)/(x^(4))=23 then what is the value of (x-(1)/(x))^(2)?

    Text Solution

    |

  4. If x+(1)/(x)=3 then what is the value of x^(5)+(1)/(x^(5)) ?

    Text Solution

    |

  5. If a+b=6, a-b=2 then what is the value of 2(a^(2)+b^(2))?

    Text Solution

    |

  6. If 2a-(2)/(a)+3=0, then value of (a^(3)-(1)/(a^(3))+2) is -

    Text Solution

    |

  7. If factors of x^(3)+(a+1) x^(2)-(b-2)x -6 are (x+1) and (x-2) then val...

    Text Solution

    |

  8. If x is real and x^(4)+(1)/(x^(4))=119, then value of (x-(1)/(x)) is

    Text Solution

    |

  9. If x^(3) + y^(3) = 35 and x + y = 5 then the value of (1)/( x) + (...

    Text Solution

    |

  10. If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1, then value of (a...

    Text Solution

    |

  11. Value of a and b(a gt 0, b lt 0) for which 8x^(3)-ax^(2)+54x+b is a pe...

    Text Solution

    |

  12. If x = ( 4ab)/(a +b) ( a ne b) the value of ( x + 2a)/( x - 2a) + ( x...

    Text Solution

    |

  13. If a+b+c=8, then value of (a-4)^(3) +(b-3)^(3) +(c-1)^(3)-3(a-4) (b-3)...

    Text Solution

    |

  14. If x = sqrt(a) + (1)/( sqrt(a)) , y = sqrt(a) - (1)/( sqrt(a)) ( a gt...

    Text Solution

    |

  15. If 5a+(1)/(3a)=5, then value of 9a^(2)+(1)/(25a^(2)) is

    Text Solution

    |

  16. If a+b+c=0, then what is the value of a^(2)/(bc)+b^(2)/(ca)+c^(2)/(ab)...

    Text Solution

    |

  17. If a, b, c are real, a^(3)+b^(3)+c^(3)=3abc and a+b+c ne 0, then relat...

    Text Solution

    |

  18. If a^(2)+(1)/(a^(2))=98, a gt 0 , then the value of a^(3)+(1)/(a^(3)) ...

    Text Solution

    |

  19. If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x...

    Text Solution

    |

  20. If a ^(2) + b ^(2) + c ^(2) = 2 (a - b -c) - 3, then the value of 2a -...

    Text Solution

    |