Home
Class 14
MATHS
If a+b+1=0 then what is the value of (a^...

If `a+b+1=0` then what is the value of `(a^(3)+b^(3)+1-3ab)`?

A

`-1`

B

1

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + 1 - 3ab \) given that \( a + b + 1 = 0 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ a + b + 1 = 0 \] From this, we can express \( a + b \): \[ a + b = -1 \] 2. **Use the identity for \( a^3 + b^3 \)**: The identity for the sum of cubes is: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] We can also express \( a^2 + b^2 \) using the square of the sum: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting \( a + b = -1 \): \[ a^2 + b^2 = (-1)^2 - 2ab = 1 - 2ab \] 3. **Substituting into the identity**: Now, substituting \( a + b \) and \( a^2 + b^2 \) into the identity for \( a^3 + b^3 \): \[ a^3 + b^3 = (-1)((1 - 2ab) - ab) = - (1 - 2ab - ab) = - (1 - 3ab) \] Thus, we have: \[ a^3 + b^3 = -1 + 3ab \] 4. **Now substitute into the expression we need to evaluate**: We need to find: \[ a^3 + b^3 + 1 - 3ab \] Substituting \( a^3 + b^3 \): \[ = (-1 + 3ab) + 1 - 3ab \] 5. **Simplifying the expression**: \[ = -1 + 3ab + 1 - 3ab = 0 \] ### Final Result: Thus, the value of \( a^3 + b^3 + 1 - 3ab \) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1A |104 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?

If a-b=1 and ab=6 then what is the value of (a^(3)-b^(3))?

Knowledge Check

  • If a - b = 2 and ab = 24 then what is the value of (a^(3) - b^(3)) ?

    A
    280
    B
    124
    C
    140
    D
    152
  • If a + b + 1 = 0, then the value of (a^(3) + b^(3) +1 -3ab) is

    A
    3
    B
    0
    C
    `-1`
    D
    `1`
  • If a^(2) + b^(2) = 88 and ab = 6, (a gt 0, b gt 0) then what is the value of (a^(3) + b^(3)) ?

    A
    980
    B
    1180
    C
    820
    D
    1000
  • Similar Questions

    Explore conceptually related problems

    If a + b + 1 = 0, then what will be the value of a^(3) + b^(3) + 1 - 3ab ?

    If ab (a + b) = 1, then what is the value of (1)/(a ^(3) b ^(2)) - a ^(3) - b ^(3) ?

    If ab(a+b)=1 , then what is the value of (1)/(a^(3)b^(3))-a^(3)-b^(3) ?

    If ab ( a + b ) = 1 then what is the value of ( 1) / ( a^( 3) b ^(3)) - a^(3) - b^(3) ?

    If a/b + b/a -1=0 , then the value of a^3 +b^3 is