Home
Class 14
MATHS
If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2...

If `(x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1`, then value of `(a)/(a+x) +(b)/(b+y) +(c )/(c+z)` is

A

`-1`

B

2

C

1

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: \[ \frac{x^2}{by + cz} = \frac{y^2}{cz + ax} = \frac{z^2}{ax + by} = 1 \] This implies: 1. \( \frac{x^2}{by + cz} = 1 \) which leads to \( x^2 = by + cz \) 2. \( \frac{y^2}{cz + ax} = 1 \) which leads to \( y^2 = cz + ax \) 3. \( \frac{z^2}{ax + by} = 1 \) which leads to \( z^2 = ax + by \) Now, we will express \( x^2, y^2, z^2 \) in terms of \( a, b, c, x, y, z \): From the first equation: \[ x^2 = by + cz \] Adding \( ax \) to both sides: \[ x^2 + ax = by + cz + ax \] Factoring out \( x \): \[ x(x + a) = by + cz + ax \] From the second equation: \[ y^2 = cz + ax \] Adding \( by \) to both sides: \[ y^2 + by = cz + ax + by \] Factoring out \( y \): \[ y(y + b) = cz + ax + by \] From the third equation: \[ z^2 = ax + by \] Adding \( cz \) to both sides: \[ z^2 + cz = ax + by + cz \] Factoring out \( z \): \[ z(z + c) = ax + by + cz \] Now we need to find the value of: \[ \frac{a}{a+x} + \frac{b}{b+y} + \frac{c}{c+z} \] Substituting the expressions we derived: \[ \frac{a}{a+x} + \frac{b}{b+y} + \frac{c}{c+z} = \frac{a}{a+x} + \frac{b}{b+y} + \frac{c}{c+z} \] Now let's rewrite each term: 1. For \( \frac{a}{a+x} \): \[ \frac{a}{a+x} = \frac{a}{a + \frac{x^2}{by + cz}} = \frac{a}{a + \frac{by + cz}{by + cz}} = \frac{a(by + cz)}{(a + by + cz)} \] 2. For \( \frac{b}{b+y} \): \[ \frac{b}{b+y} = \frac{b}{b + \frac{y^2}{cz + ax}} = \frac{b}{b + \frac{cz + ax}{cz + ax}} = \frac{b(cz + ax)}{(b + cz + ax)} \] 3. For \( \frac{c}{c+z} \): \[ \frac{c}{c+z} = \frac{c}{c + \frac{z^2}{ax + by}} = \frac{c}{c + \frac{ax + by}{ax + by}} = \frac{c(ax + by)}{(c + ax + by)} \] Now, adding these fractions together, we notice that the denominators are the same: \[ \frac{a + b + c}{a + b + c} = 1 \] Thus, the value of \( \frac{a}{a+x} + \frac{b}{b+y} + \frac{c}{c+z} \) simplifies to: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1A |104 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/(x+a) + (b)/(y+b)+ (c )/(z+c ) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+2a) + (b)/(y+2b) + (c )/(z+2c) = ?

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (x)/(x+a) + (y)/(y+a) + (z)/(z+c) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2a) + (y)/(y+ 2b) + (z)/(z+ 2c) = ?

If a^2=by +cz " " b^2=cz+ax and c^2=ax+by , then the value of (x)/(a+x) + (y)/(b+y) +(z)/(c+z) will be

If (x)/(b-c)=(y)/(c-a)=(z)/(a-b), prove that ax+by+cz=0

If (ax)/(y)+(by)/(x)=c,(by)/(z)+(cz)/(y)=a,(cz)/(x)+(ax)/(z)=b then the value of (yz)/(x^(2))+(zx)/(y^(2))+(xy)/(z^(2))

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1B
  1. If x is real and x^(4)+(1)/(x^(4))=119, then value of (x-(1)/(x)) is

    Text Solution

    |

  2. If x^(3) + y^(3) = 35 and x + y = 5 then the value of (1)/( x) + (...

    Text Solution

    |

  3. If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1, then value of (a...

    Text Solution

    |

  4. Value of a and b(a gt 0, b lt 0) for which 8x^(3)-ax^(2)+54x+b is a pe...

    Text Solution

    |

  5. If x = ( 4ab)/(a +b) ( a ne b) the value of ( x + 2a)/( x - 2a) + ( x...

    Text Solution

    |

  6. If a+b+c=8, then value of (a-4)^(3) +(b-3)^(3) +(c-1)^(3)-3(a-4) (b-3)...

    Text Solution

    |

  7. If x = sqrt(a) + (1)/( sqrt(a)) , y = sqrt(a) - (1)/( sqrt(a)) ( a gt...

    Text Solution

    |

  8. If 5a+(1)/(3a)=5, then value of 9a^(2)+(1)/(25a^(2)) is

    Text Solution

    |

  9. If a+b+c=0, then what is the value of a^(2)/(bc)+b^(2)/(ca)+c^(2)/(ab)...

    Text Solution

    |

  10. If a, b, c are real, a^(3)+b^(3)+c^(3)=3abc and a+b+c ne 0, then relat...

    Text Solution

    |

  11. If a^(2)+(1)/(a^(2))=98, a gt 0 , then the value of a^(3)+(1)/(a^(3)) ...

    Text Solution

    |

  12. If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x...

    Text Solution

    |

  13. If a ^(2) + b ^(2) + c ^(2) = 2 (a - b -c) - 3, then the value of 2a -...

    Text Solution

    |

  14. If 2x-(1)/(2x)=6 then what is the value of x^(2)+(1)/(16x^(2)) ?

    Text Solution

    |

  15. If (5x^(2)-3y^(2)):xy=11:2 then what is the positive value of (x)/(y) ...

    Text Solution

    |

  16. If ax+by=6, bx-ay=2and x^(2)+y^(2)=4 then what is (a^(2)+b^(2))?

    Text Solution

    |

  17. If a ^(3) - b ^(3) = 56 and a - b = 2 then what is the value of a ^(2...

    Text Solution

    |

  18. If a+(1)/(a)=1 then what is the value of a^(3)?

    Text Solution

    |

  19. If (a-b) =3, (b-c)=5 and (c-a)=1 then what is the value of (a^(3)+b^(3...

    Text Solution

    |

  20. If x=2t and y=(2t-1)/(3), then for what value of t, x=y is correct?

    Text Solution

    |