Home
Class 12
MATHS
The multiplicative inverse of (6 + 5i) ^...

The multiplicative inverse of `(6 + 5i) ^(2)` is

A

`(11)/(61) - (60)/(61) I`

B

`(11)/(61) + (60)/(61) I `

C

`(9)/(61) - (60)/(61) I`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the multiplicative inverse of \( (6 + 5i)^2 \), we will follow these steps: ### Step 1: Calculate \( (6 + 5i)^2 \) Using the formula for squaring a binomial, \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ (6 + 5i)^2 = 6^2 + 2 \cdot 6 \cdot 5i + (5i)^2 \] Calculating each term: - \( 6^2 = 36 \) - \( 2 \cdot 6 \cdot 5i = 60i \) - \( (5i)^2 = 25i^2 = 25(-1) = -25 \) Combining these results: \[ (6 + 5i)^2 = 36 + 60i - 25 = 11 + 60i \] ### Step 2: Find the multiplicative inverse The multiplicative inverse of a complex number \( z = a + bi \) is given by: \[ z^{-1} = \frac{1}{z} = \frac{1}{a + bi} \] In our case, \( z = 11 + 60i \): \[ z^{-1} = \frac{1}{11 + 60i} \] ### Step 3: Multiply by the conjugate To eliminate the imaginary part from the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ z^{-1} = \frac{1}{11 + 60i} \cdot \frac{11 - 60i}{11 - 60i} = \frac{11 - 60i}{(11 + 60i)(11 - 60i)} \] ### Step 4: Calculate the denominator The denominator can be calculated using the difference of squares: \[ (11 + 60i)(11 - 60i) = 11^2 - (60i)^2 = 121 - 3600(-1) = 121 + 3600 = 3721 \] ### Step 5: Write the result Now substituting back into the expression for the multiplicative inverse: \[ z^{-1} = \frac{11 - 60i}{3721} \] ### Final Answer Thus, the multiplicative inverse of \( (6 + 5i)^2 \) is: \[ \frac{11}{3721} - \frac{60i}{3721} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

The multiplicative inverse of 1/2

Multiplicative inverse of 1/6

The multiplicative inverse of -2/5

The multiplicative inverse of -4/5

The multiplicative inverse of 7^-2

The multiplicative inverse of -2/7

The multiplicative inverse of -3/4

Multiplicative inverse of -6 is

The multiplicative inverse of (3+sqrt5i)^(2) is