Home
Class 12
MATHS
If z (1) = 8 + 4i, z (2) = 6 + 4i and ar...

If `z _(1) = 8 + 4i, z _(2) = 6 + 4i and arg ((z - z _(1))/( z- z _(2))) = (pi)/(4),` then z satisfies

A

`| z- 7 -4i | =1`

B

`| z - 7 - 5i | = sqrt2`

C

` | z - 4i | =8`

D

` | z - 7i | = sqrt18`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

If z1=8+4i,z2=6+4i and arg((z-z1)/(z-z2))=(pi)/(4), then z, satisfies

If z_1 = 8 + 4i, z_2 = 6 + 4iand arg ((z-z_1) / (z-z_2)) = pi / 4, then 'z' satisfies 1) | z-7-4i | = 1 2) | z-7-5i | = sqrt (2) 3) | z-4i | = 8 4) | z-7i | = sqrt (18)

Let z_(1)=6+i&z_(2)=4-3i Let z be a a complex number such that arg((z-z_(1))/(z-z_(2)))=(pi)/(2) then z satisfies

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

If z=x+iy such that |z+1|=|z-1| and arg((z-1)/(z+1))=(pi)/(4) then