Home
Class 12
MATHS
If z =1 + cos "" (pi)/(5) + I sin "" (pi...

If `z =1 + cos "" (pi)/(5) + I sin "" (pi)/(5),` then sin (areg z) si equal to

A

`(sqrt (10 - 2 sqrt5))/( 4)`

B

`( sqrt5 - 1)/(4)`

C

`( sqrt5 + 1)/(4)`

D

`( sqrt2 - 1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

If z=1+cos((pi)/(5))+i sin((pi)/(5)) then sin(argz) is equal to

if z = cos ""pi/4 + i sin""pi/6 then

If z=cos((pi)/(4))+i sin((pi)/(6)), then

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

Let z = a("cos"(pi)/(5) + "i sin" (pi)/(5)),a in R, |a| lt 1 , then S = z^(2015) + z^(2016) + z^(2017) + ... equals

If z_(k)=cos((k pi)/(10))+i sin((k pi)/(10)), then z_(1)z_(2)z_(3)z_(4) is equal to (A)-1 (B) 2(C)-2 (D) 1

Arg{sin8(pi)/(5)+i(1+cos8(pi)/(5))} is equal to: