Home
Class 12
MATHS
The value of sum sum(n=1)^(13) ( i^(n) +...

The value of sum `sum_(n=1)^(13) ( i^(n) + i^(n+1))` where `i= sqrt( -1)` , is equal to

A

i

B

`i-1`

C

`-i`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

The value of the sums sum_(n=1)^(13)(i^(n)+i^(n+1)) where i=sqrt(-)1 is : (a) i(b)i-1(c)-i(d)

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)), where i=sqrt(-1) equals (A)i(B)i-1(C)-i(D)0

Evaluate sum_(n=1)^(13)(i^(n)+i^(n+1)), where n in N

the value of sum i^(2n+1!)