Home
Class 12
MATHS
The value of |{:( 1 + omega, (omega ^...

The value of `|{:( 1 + omega, (omega ^(2)), 1 + omega ^(2)), ( - omega , - (1 + omega ^(2)), 1 + omega ), ( -1 , - (1 + omega^2 ) , 1 + omega ):}|,` where ` omega `is cube root of unity, is equal to

A

`2 omega `

B

`2omega ^(2)`

C

`-3 omega ^(2)`

D

`3 omega`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} 1 + \omega & \omega^2 & 1 + \omega^2 \\ - \omega & - (1 + \omega^2) & 1 + \omega \\ -1 & - (1 + \omega^2) & 1 + \omega \end{vmatrix} \] where \(\omega\) is a cube root of unity, meaning \(\omega^3 = 1\) and \(1 + \omega + \omega^2 = 0\). ### Step 1: Substitute the values of \(\omega\) Using the property of cube roots of unity, we know that: \[ 1 + \omega + \omega^2 = 0 \implies \omega^2 = -1 - \omega \] ### Step 2: Rewrite the determinant Now, substituting \(\omega^2\) into the determinant: \[ D = \begin{vmatrix} 1 + \omega & -1 - \omega & 1 - 1 - \omega \\ - \omega & - (1 - 1 - \omega) & 1 + \omega \\ -1 & - (1 - 1 - \omega) & 1 + \omega \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 + \omega & -1 - \omega & -\omega \\ - \omega & \omega & 1 + \omega \\ -1 & \omega & 1 + \omega \end{vmatrix} \] ### Step 3: Simplify the determinant We can perform row operations to simplify the determinant. Let's add the first column to the second column: \[ D = \begin{vmatrix} 1 + \omega & 0 & -\omega \\ - \omega & 0 & 1 + \omega \\ -1 & 0 & 1 + \omega \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant along the second column: \[ D = 0 \cdot \begin{vmatrix} \cdots \end{vmatrix} - 0 \cdot \begin{vmatrix} \cdots \end{vmatrix} + (1 + \omega) \cdot \begin{vmatrix} 1 + \omega & -\omega \\ - \omega & 1 + \omega \end{vmatrix} \] ### Step 5: Calculate the smaller determinant Calculating the smaller determinant: \[ \begin{vmatrix} 1 + \omega & -\omega \\ - \omega & 1 + \omega \end{vmatrix} = (1 + \omega)(1 + \omega) - (-\omega)(-\omega) = (1 + \omega)^2 - \omega^2 \] Using \( (1 + \omega)^2 = 1 + 2\omega + \omega^2 = 1 + 2\omega - 1 - \omega = \omega \): \[ = \omega - \omega^2 = \omega + 1 + \omega = 2\omega \] ### Step 6: Substitute back into the determinant Now substituting back into the determinant: \[ D = (1 + \omega)(2\omega) = 2\omega + 2\omega^2 \] Using \(1 + \omega + \omega^2 = 0\): \[ D = 2(-1 - \omega) = -2 - 2\omega \] ### Step 7: Final simplification Thus, the value of the determinant is: \[ D = -2 - 2\omega \] ### Conclusion The final value of the determinant is: \[ D = -3\omega^2 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    BITSAT GUIDE|Exercise BITSET Archives |13 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    BITSAT GUIDE|Exercise BITSAT Archives|16 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos

Similar Questions

Explore conceptually related problems

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

What is the value of |(1-i, omega^2,-omega), (omega^2+i,omega,-i), (1-2i-omega^2,omega^2-omega,i-omega)|, where omega is the cube root of unity?

What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)+i," "omega," "-i),(1-2i-omega^(2),omega^(2)-omega,i-omega):}| , where omega is the cube root of unity ?

What is sqrt((1+_(omega)^(2))/(1+_(omega))) equal to, where omega is the cube root of unity ?

find the value of |[1,1,1],[1,omega^(2),omega],[1,omega,omega^(2)]| where omega is a cube root of unity

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is